Identification of Francisella tularensis genes affected by iron limitation.
نویسندگان
چکیده
Cells of an attenuated live vaccine strain (LVS) of F. tularensis grown under iron-restricted conditions were found to contain increased quantities of several proteins relative to cells of this same strain grown under iron-replete conditions. Mass spectrometric analysis identified two of these proteins as IglC and PdpB, both of which are encoded by genes located in a previously identified pathogenicity island in F. tularensis LVS. Regions with homology to the consensus Fur box sequence were located immediately in front of the iglC and pdpB open reading frames (ORFs), and in silico analysis of the F. tularensis Schu4 genome detected a number of predicted 5' untranslated regions that contained putative Fur boxes. The putative Fur box preceding Francisella iron-regulated gene A (figA) had the highest degree of identity with the consensus Fur box sequence. DNA microarray analysis showed that nearly 80 of the genes in the F. tularensis LVS genome were up- or down-regulated at least twofold under iron-restricted growth conditions. When tested for possible siderophore production by means of the Chrome Azurol S assay, a wild-type F. novicida strain produced a large reaction zone whereas its figA mutant produced very little reactivity in this assay. In addition, a cross-feeding experiment demonstrated that this siderophore-like activity produced by the wild-type F. novicida strain could enhance the ability of the F. novicida figA mutant to grow under iron-restricted conditions. This study provides the first identification of iron-regulated genes in F. tularensis LVS and evidence for the production of a siderophore-like molecule by F. novicida.
منابع مشابه
fslE is necessary for siderophore-mediated iron acquisition in Francisella tularensis Schu S4.
Strains of Francisella tularensis secrete a siderophore in response to iron limitation. Siderophore production is dependent on fslA, the first gene in an operon that appears to encode biosynthetic and export functions for the siderophore. Transcription of the operon is induced under conditions of iron limitation. The fsl genes lie adjacent to the fur homolog on the chromosome, and there is a ca...
متن کاملSimple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR
Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...
متن کاملProteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC.
Francisella tularensis is a highly virulent, facultative intracellular pathogen that causes tularemia in humans and animals. Although it is one of the most infectious bacterial pathogens, little is known about its virulence mechanisms. In this study, the response of F. tularensis live vaccine strain to iron depletion, which simulates the environment within the host, was investigated. In order t...
متن کاملCharacterization of the siderophore of Francisella tularensis and role of fslA in siderophore production.
We determined that LVS and Schu S4 strains of the human pathogen Francisella tularensis express a siderophore when grown under iron-limiting conditions. We purified this siderophore by conventional column chromatography and high-pressure liquid chromatography and used mass spectrometric analysis to demonstrate that it is structurally similar to the polycarboxylate siderophore rhizoferrin. The s...
متن کاملFmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence
Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 74 7 شماره
صفحات -
تاریخ انتشار 2006